Nature Communications volume 14, Numéro d'article : 3287 (2023) Citer cet article
1365 accès
1 Citation
93 Altmétrique
Détails des métriques
Les cônes marins ont attiré des chercheurs de toutes les disciplines, mais les premiers stades de leur vie ont reçu une attention limitée en raison des difficultés d'accès ou d'élevage des spécimens juvéniles. Ici, nous documentons la culture de Conus magus à partir d'œufs jusqu'à la métamorphose pour révéler des changements spectaculaires dans le comportement alimentaire prédateur entre les juvéniles post-métamorphiques et les spécimens adultes. Les adultes C. magus capturent des poissons à l'aide d'un ensemble de peptides de venin paralysant combinés à une dent radulaire crochue utilisée pour attacher les poissons venimeux. En revanche, les premiers juvéniles se nourrissent exclusivement de vers polychètes en utilisant un comportement de recherche de nourriture unique de « piqûre et tige » facilité par des dents radulaires courtes et non barbelées et un répertoire de venin distinct qui induit une hypoactivité chez les proies. Nos résultats démontrent comment des changements morphologiques, comportementaux et moléculaires coordonnés facilitent le passage de la chasse aux vers à la chasse aux poissons chez C. magus, et présentent les cônes juvéniles comme une source riche et inexplorée de nouveaux peptides de venin pour les études écologiques, évolutives et de biodécouverte.
Tout au long de l’histoire de la vie, les innovations évolutives ont permis aux lignées en évolution d’acquérir de nouvelles fonctions qui ouvrent des opportunités écologiques et, dans de nombreux cas, favorisent la diversification1,2. Comprendre comment ces transitions se sont produites peut être difficile, les traits observés résultant souvent d'une série de changements évolutifs qui aboutissent finalement à un trait complexe3,4. L'appareil à venin des escargots cônes marins (Gastropoda : Conidae) est un exemple d'innovation évolutive qui a évolué grâce à des modifications morphologiques de l'intestin antérieur5, favorisant la radiation étendue du groupe depuis l'Éocène, avec plus de 1000 espèces existantes réparties dans le monde6. Ce groupe de gastéropodes prédateurs a évolué au cours d'un cycle de vie biphasique, la plupart des espèces éclos sous forme de larves nageant librement qui deviennent des juvéniles carnivores benthiques après métamorphose7,8. L'alimentation prédatrice après la métamorphose repose sur le déploiement de neurotoxines puissantes (conotoxines) sécrétées dans une longue glande à venin tubulaire et injectées via des dents radulaires creuses et hautement modifiées9,10. Cette stratégie alimentaire sophistiquée a permis à ces prédateurs lents de se nourrir initialement de vers et, plus récemment, a facilité le passage à la chasse aux mollusques et aux poissons11,12.
En raison de leurs radiations récentes et étendues et de la pléthore de peptides de venin qu’ils produisent, les escargots cônes ont suscité l’intérêt des biologistes évolutionnistes11, des pharmacologues13 et des toxicologues14, mais cet intérêt général contraste avec la rareté de la littérature sur les premiers stades de la vie. Les observations de juvéniles sur le terrain ont été gênées par leur petite taille et leur identification souvent limitée par une forte similarité morphologique entre espèces apparentées15,16,17. D’un autre côté, les défis liés à l’élevage d’escargots cônes ont limité les enquêtes antérieures à l’exploration des stades embryonnaires et larvaires18,19,20,21. En raison de ces limitations, l’écologie et la biochimie des cônes juvéniles ont été largement négligées. Cela s'étend à des espèces largement étudiées telles que le cône du magicien (Conus magus Linnaeus, 1758), source de l'analgésique Prialt® (ω-conotoxine MVIIA) approuvé par la FDA22. Sur la base de spécimens disséqués capturés dans la nature, il a été suggéré que C. magus subissait un changement de régime alimentaire passant de la chasse aux vers à la chasse aux poissons au cours de l'ontogenèse23, mais les preuves empiriques font défaut en raison des difficultés d'accès aux premiers stades de la vie.
Ici, nous avons cultivé Conus magus depuis les capsules d'œufs jusqu'aux larves en train d'éclore, et par métamorphose en juvéniles carnivores. Après la métamorphose, on a observé que les juvéniles de C. magus se nourrissaient exclusivement de vers polychètes en utilisant des dents radulaires ancestrales et un répertoire de venins unique, avant de passer à la chasse au poisson à l'âge adulte. Grâce à une combinaison d'approches expérimentales, nous démontrons comment la transition de la chasse aux vers à la chasse aux poissons au cours de l'ontogenèse est marquée par une série de changements coordonnés qui couvrent tous les niveaux de l'organisation biologique. Nos résultats montrent comment les spécimens élevés en laboratoire peuvent fournir de nouvelles informations sur l’écologie des étapes secrètes de la vie et mettent en évidence le potentiel des escargots cônes juvéniles en tant que source inexploitée de nouveaux peptides de venin bioactifs qui ne seraient autrement accessibles que par capture d’exons ou séquençage du génome.
4 mm23. Additionally, the methods used for the identification of small specimens are not mentioned and the high morphological similarity between juvenile cone snails suggests the sampling could have included other species. The present study provides empirical evidence of strict vermivory in juvenile C. magus. The feeding behaviour of juveniles was initiated by extension of the proboscis which probed the surface of the worm in preparation for venom injection. After several minutes, a radular tooth held at the tip of the proboscis was stabbed into the worm and the proboscis rapidly withdrawn inside the rostrum, leaving the prey untethered. Envenomation induced hypoactivity in worm prey, characterised by the loss of normal swimming, hiding and escape behaviours. The snail then stalked its prey for several minutes before extending its rostrum and engulfing the worm whole (Supplementary Movie 2). Occasionally, worms were stung a second time. The same feeding sequence was observed in all juveniles from 10 dps, although histology and rapid shell growth between 6–10 dps suggest carnivory may have started earlier (Fig. 1d). This “sting-and-stalk” foraging behaviour was consistent with the juvenile radular tooth lacking apical barbs, blades and serrations (Fig. 4b; Supplementary Fig. 2a), as seen in wild-caught specimens23. The hooked accessory process and the basal ligament seen in the adult tooth were also absent. The juvenile radular tooth was short in absolute and relative length, measuring 69.7 ± 1.15 µm (n = 5) in length for a shell length (SL) of 1.71 ± 0.08 mm (n = 5) (4.1% of SL). It had a waist and a broad base with a wide opening, as typically seen in vermivorous species. Interestingly, similar teeth are also found in juvenile worm-27 and mollusc-hunters (Rogalski, A. et al., manuscript in preparation), indicating that this trait has been retained in early life stages across Conidae. Morphometric analyses confirmed similarity with radular teeth from vermivorous cone snails (Supplementary Fig. 3; Supplementary Data 1), and the presence of similar teeth in related conoidean lineages such as Mitromorphidae and Borsoniidae28,29 suggests this trait may be plesiomorphic within the group./p>4 kDa restricted to the adult VG (Fig. 5c; Supplementary Fig. 8a; Supplementary Data 4). Furthermore, the different MS patterns obtained from proximal and distal VG support the heterogenous distribution of conotoxins along the adult VG. While MALDI-MS is a useful technique for whole venom profiling, this approach suffers a number of limitations, including low dynamic range and ion suppression effects, preventing the detection of the full venom complexity58. To complement MALDI-MS, we additionally performed liquid chromatography-mass spectrometry (LC-MS) on the juvenile and adult C. magus VG extracts. Considering the complexity of cone snail venoms and the typical mass range of conotoxins, only monoisotopic masses between 1–10 kDa and covering ≥0.1% of relative intensity were considered to facilitate ecological interpretation (Supplementary Data 4). A total of 123 masses (104 unique) were detected in the adult VG, while 92 masses (86 unique) were found in the juvenile VG. Comparison of mass lists revealed only a single mass (1438.01 Da) was shared between both venom proteomes, supporting the differences observed by MALDI-MS. While the juvenile VG proteome was largely dominated by peptides falling into the 1–2 kDa mass range (n = 53, 57.6% of masses), the adult VG proteome contained a large proportion of 4–6 kDa peptides (n = 48, 39% of masses) compared to juveniles (n = 10, 10.9% of masses) (Fig. 4d; Supplementary Fig. 8b)./p> 10-fold the tissue volume of RNA later (Invitrogen) and stored at –80 °C until extraction. The maternal VG was dissected and divided into proximal- and distal-regions of equal sizes to investigate spatial distribution of conotoxins along the VG and RNA extracted from fresh tissue. Three segments corresponding to proximal, central and distal regions were kept in a solution of 30% acetonitrile (ACN)/1% FA for proteomics, and two small segments (proximal and distal) were placed in 2.5% glutaraldehyde and processed for histology as described above. Total RNA was extracted from all samples using TRIzol (Invitrogen) following the manufacturer’s instructions to yield 0.4–2.72 μg of purified mRNA from each sample. The RNA quality and concentration were assessed on a 2100 Bioanalyzer using the RNA 6000 Nano kit (Agilent). Complementary DNA library preparation and sequencing were performed by the Institute for Molecular Bioscience Sequencing Facility (University of Queensland). Libraries were constructed using the Illumina Stranded mRNA Prep kit. Samples were pooled in a batch of 6 and 600-cycle (2 × 300 bp) paired-end sequencing was performed on an Illumina MiSeq instrument. Raw sequencing data have been deposited in the NCBI Sequence Read Archive under BioProject accession number PRJNA943605./p>250 amino acids and with a signal region hydrophobicity score <45% were manually removed. All sequences were searched for the presence of an N-terminal signal region using the SignalP 5.071 server and sequences lacking signal regions were discarded. At this stage, nucleotide sequences were manually inspected and incomplete or aberrant sequences (internal or no stop codons, repetitions, incorrect open reading frames) were discarded. The retained contigs were annotated using blastx and blastp72 searches against the non-redundant UniprotKB/SwissProt (E-value cut off: 10–3) and Conoserver databases. The ConoPrec tool in Conoserver was then used to identify the signal-, propeptide-, mature- and post-mature regions and cysteine frameworks. Expression levels of all reads were computed in transcripts per million (TPM)73 using Kallisto 0.46.174. Expression levels were summed up for each gene superfamily and relative expression (in per cent) calculated, including a specimen from the Philippines37. We then performed a principal component analysis (PCA) to evaluate the degree of venom composition similarities between juvenile and adult C. magus using XLSTAT statistical software (Addinsoft, free trial version). For the PCA biplot, the four variables with the strongest influence on the PCs are shown. The data matrix, summary statistics, contribution of each variable (in per cent), PCA scores and loading plots can be seen in Supplementary Data 3. All peptide precursors were named according to the conventional conotoxin nomenclature (with species represented by one or two letters, cysteine framework by an Arabic numeral and, following a decimal, order of discovery by a second numeral)75, with slight modification76. The superfamily was added as a prefix and precursors differing in their propeptide regions but with conserved mature peptides were differentiated with a small roman numeral as a suffix to distinguish between minor variants. All conotoxin precursor sequences have been deposited in NCBI GenBank [https://www.ncbi.nlm.nih.gov/nuccore] under accession numbers OQ644315–OQ644445./p> 150 counts/s. The most intense isotopes were selected and fragmented with collision-induced dissociation (CID) and electron-activated dissociation (EAD) tandem mass spectrometry. MS/MS scans were collected between 50–2000 m/z over 35 ms. The dynamic collision energy setting was used, allowing collision energy to vary based on m/z and z of the precursor ion. Data were acquired using OS 3.0.0.3339 and analysed in Peakview 2.2 (both SCIEX). The CID-MS/MS spectra were searched against a database combining all translated sequences from our RNA-seq experiments and previously reported C. magus conotoxins (Supplementary Data 2) using the Paragon78 algorithm implemented in ProteinPilot 5.0 (SCIEX) with the following settings: iodoethanol (for reduced and alkylated samples), trypsin digested (for digested samples), common conotoxin post-translational modifications79, biological modifications, thorough ID. Peptides with ≥2 tryptic fragments at a confidence of 99 and a false discovery rate <1% were considered genuine. The EAD-MS/MS data were searched against the same database using Mascot 2.5.180 (Matrix Science) with the following settings: trypsin, 1 missed cleavage, carbamidomethyl as a fixed modification, oxidation of methionine and deamidation of asparagine and glutamine as variable modifications, 20 ppm peptide tolerance, 0.1 Da MS/MS tolerance, 2 + 3+ and 4+ peptide charges, with an error tolerant search included. Peptides with ≥2 tryptic fragments, individual peptide scores >60 and a significance threshold <0.05 were selected./p>3.0.CO;2-2" data-track-action="article reference" href="https://doi.org/10.1002%2F%28SICI%291522-2683%2819991201%2920%3A18%3C3551%3A%3AAID-ELPS3551%3E3.0.CO%3B2-2" aria-label="Article reference 80" data-doi="10.1002/(SICI)1522-2683(19991201)20:183.0.CO;2-2"Article CAS PubMed Google Scholar /p>